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Abstract. We calculate generalized symmetrized Wannier functions for the eight-dimensional
valence and conduction band complex of zinc-blende-type semiconductors, by Fourier trans-
formation of Bloch functions. A precondition for the success of the procedure is a precise
parametrization of the band structure in terms of a Slater–Koster interpolation scheme. The
second crucial point is the choice of the phase of the Bloch functions, for which we found a
solution even for the case without inversion symmetry. For the materials with diamond structure
we obtain s functions whose degree of localization at their respective atomic positions is 60%,
and p functions whose degree of localization is 30%. For the materials with zinc-blende structure,
the contributions from the four neighbouring atomic spheres have to be added to achieve the
same degree of localization. As an application, we use the Wannier functions as a numerical
basis when a homogeneous external electric field is applied.

1. Introduction

The construction of localized orbitals from accurate crystal wave functions is closely
connected to the Slater–Koster interpolation scheme—or tight-binding (TB) method—where
the whole band structure is expressed by means of a small set of parameters, which are
matrix elements of localized wave functions. While the TB method is widely applied in
semiconductor physics, the corresponding orbitals are not known.

Apart from the general interest in the properties of these functions, there are several
possible applications in semiconductor physics. These are for instance in representing
localized perturbations such as single atoms or clusters of atoms (quantum dots) or in the
improvement of TB calculations for heterostructures by taking into account interface effects
and the overlap of the orbitals for different bulk materials. Another possible application is
in the study of external fields, where the evaluation of the matrix elements of position or
momentum operators is required.

There are two approaches to the calculation of Wannier functions. The direct variational
approach proposed by Kohn [1] consists in a minimization of the total energy in terms of
Wannier functions. Although very elegant in theory, this method encounters problems in
practice, because the periodicity of the crystal potential cannot be exploited. The infinite
sums over lattice sites lead to considerable numerical problems, especially in the case of
open structures like semiconductors.

These difficulties can be circumvented only by using pseudopotentials, as Tejedor and
Vergés [2] did in a calculation for the valence bands of semiconductors, where the resulting
pseudo-Wannier functions could be expressed as linear combinations of plane waves.
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On the other hand, a calculation applying the Fourier transformation to Bloch functions
can make use of modern first-principles techniques. However, early attempts in this field
[3, 4] were not successful. This is due to two fundamental problems which occur when
applying the Fourier transformation to Bloch functions. First, the Bloch functions are not
analytical functions of the wave vectork at points of degeneracy. This leads to a breakdown
of the convergence of the Fourier series. The second point is that the Bloch functions are
determined only up to an arbitrary complex phase factor. The localization of the Wannier
functions has to be maximized by an appropriate choice of this phase.

The key to the solution of the first problem lies in the treatment of a band complex, as
was shown by Blount, Des Cloizeaux and Bross [5–7]. Teichler [8] has shown that in the
case where inversion symmetry holds, the phase is determined up to the sign. On the basis
of these considerations, highly localized Wannier functions could be calculated for the fcc
transition metals [9]. In the following, these ideas are generalized for a crystal lattice with
a basis, and are then applied to semiconductors with diamond and zinc-blende structure.

The paper is organized as follows. We first define generalized Wannier functions in
the context of a Slater–Koster interpolation scheme. Special emphasis is put on how the
phase of the Bloch functions has to be chosen, even when there is no inversion symmetry.
Then we give numerical results concerning the localization properties of the semiconductor
Wannier functions.

2. Definition of generalized Wannier functions

2.1. Parametrization of the band structure

We briefly recall the basic ideas of a Slater–Koster interpolation scheme for a crystal lattice
with a basis. The one-particle energies and wave functions may be obtained from a first-
principles calculation by means of the approximate solution of an effective one-particle
Schr̈odinger equation:

H|nk〉 = Enk|nk〉. (1)

H is the effective one-particle Hamiltonian,Enk the one-particle energy eigenvalue for wave
vectork and bandn, and|nk〉 denotes the corresponding Bloch state.

A model Hamiltonian will be constructed which yields the same eigenvaluesEnk for a
certain number of bands:

H(k)e(n,k) = Enke(n,k) (2)

wheree(n,k) are the eigenvectors. The basis of the crystal lattice may containN atoms.
Then the Hamiltonian matrix consists ofN ×N submatrices:

H(k) :=
 H(11) · · · H(1N)

...
. . .

...

H(N1) · · · H(NN)

 (3)

with the Fourier expansion

H(s ′s)(k) =
∑
R

ε(s
′s)(R+ s′ − s) exp [−ik · (R+ s′ − s)]. (4)

The superscriptss, s ′ indicate the submatrices belonging to a pair of basis atoms numbered
s ands ′, respectively, and thus run from 1 toN . TheR are the lattice vectors, and thes are
the positions of the atoms in the basis with respect to a lattice point. The model Hamiltonian
depends on the parametersε which still have to be determined, but independently of these
it should contain all of the symmetries of the problem.
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First, we consider the point symmetry. The submatrices ofH transform with the matrices
Γs for s = 1, . . . , N :

H(ss ′)(αk) = Γs(α)H(ss ′)(k)Γs ′(α)−1 (5)

where α denotes an element of the point subgroup, which is defined as the maximum
intersection of the point group and the space group. The matricesΓs are composed of
the representations of the point subgroup which belong to atoms. These representations
are determined by the requirement that the eigenvectorse(n,k) at symmetrick-points
transform according to the same representations as the corresponding Bloch functions.
Similar symmetry requirements apply for the coefficient matrices:

ε(s
′s)(α(R+ s′ − s)) = Γs(α)ε(s

′s)(R+ s′ − s)Γs ′(α)−1. (6)

If the Hamilton operator commutes with the inversion operator{i, ti}, we have

ε(s
′s)(R+ s′ − s) = ε(s ′′′s ′′)(−R− s′ + s+ ti ) (7)

where s ′′′ and s ′′ are given bys′′ = −s + ti and s′′′ = −s′ + ti , respectively. If spin–
orbit coupling is neglected, theε(s

′s)
νµ (R + s′ − s) are real due to time-reversal symmetry

[10]. The independent parametersε which remain after exploiting all of these symmetries
have to be determined by means of a non-linear least-squares fit of the model Hamiltonian’s
eigenvalues (2) to the band-structure energies.

2.2. Definition of the Wannier functions

We now define generalized Wannier functions using the eigenvectors of the model Hamil-
tonian. These consist of subvectors belonging to the various basis atoms:

e(n,k) = (e(n,k)1, . . . ,e(n,k)N) (8)

and obey the orthogonality relations∑
n

e(n,k)s
′
ν

∗
e(n,k)sµ = δss ′δνµ (9)∑

sν

e(n′,k)sν
∗
e(n,k)sν = δnn′ . (10)

Because of (5), they transform with the matricesΓs :

e(n, αk)s = Γs(α)e(n,k)s . (11)

A Wannier function of symmetryν centred atR + s is defined by the following unitary
transformation:

|νsR〉 ≡ �1/2

(2π)3/2

∫
BZ

dk exp [−ik · (s+R)]
∑
n

e(n,k)sν
∗|nk〉 (12)

where� is the volume of the Wigner–Seitz cell andBZ the first Brillouin zone.
The reciprocal relation is

|nk〉 = �1/2

(2π)3/2
∑
s

∑
R

exp [ik · (s+R)]
∑
ν

e(n,k)sν |νsR〉. (13)

Then the coefficients in (4) are the energy matrix elements of the Wannier functions:

ε(s
′s)

µν (R
′ −R+ s′ − s) = 〈µs′R′|H|νsR〉. (14)
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In the following, these are called Slater–Koster (SK) parameters. From the orthogonality
of the Bloch functions and the eigenvectors (9), one obtains the orthogonality relations for
the Wannier functions:

〈µs′R′|νsR〉 = δss ′δνµδRR′ . (15)

Application of a space group operation{α,a} yields

{α,a}|νsR〉 =
∑
µ

0s(α
−1)νµ|µ, αs, αR+ a〉. (16)

Thus, the Wannier functions transform like basis functions to the irreducible representations
of the point subgroup. In the appendix it is shown that this transformation property requires
the following condition for degenerate statesn andn′ at symmetrick-points:∑

s

∑
µν

0s(β)
−1
νµe(n,k)

s
µ
∗e(n′,k)sν = 〈n′k|{β, tβ}|nk〉 (17)

for an element{β, tβ} of the little group of k. This corresponds to the degenerate
eigenvectors in their subspace adopting the orientation of the corresponding degenerate
Bloch functions.

With spin–orbit coupling neglected, time-reversal symmetry yields, up to a phase factor,

〈r|n,−k〉 = 〈nk|r〉 (18)

e(n,−k)s = e(n,k)s∗. (19)

If this phase factor is chosen equal in the two cases, it cancels in (12). As always, bothk
and−k appear in the integration over the Brillouin zone, the Wannier functions are real:

〈r|νsR〉 =
∫
BZ

∑
n

Re
{
e(n,k)sν

∗〈r|nk〉 exp [−ik · s]
}

dk. (20)

In some cases it might be useful to perform the Fourier transformation only in one
direction perpendicular to a given crystal plane, or equivalently to combine the Wannier
functions of this plane. Leta1 anda2 be the in-plane basis vectors of the lattice,a3 the
third one, andR = l1a1 + l2a2 + la3. Then we can define layer Wannier functions for a
fixed wave vectork⊥ perpendicular toa3:

|k⊥, νsl〉 =
∑
l1,l2

exp [k⊥ · (l1a1+ l2a2)]|νsR〉. (21)

It is to be emphasized that the model Hamiltonian and the Wannier functions crucially
depend on the choice of the independent Slater–Koster parameters. From equation (14)
it follows directly that localized Wannier functions can be expected only if the Fourier
expansion (4) converges quickly.

2.3. Choice of the phase

Apart from the degeneracies, the second fundamental problem in the construction of Wannier
functions from Bloch functions is the choice of the phase of the latter. Here, two cases
have to be distinguished.
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2.3.1. Inversion symmetry.In the case of inversion symmetry, there is either only one
atom in the basis—this simpler case was considered in reference [9]—or there are always
two identical atoms at positionss1 ands2, with

s1 = {i, ti}s2 (22)

where {i, ti} denotes the inversion operator. Then the phase of the eigenvectorse(n,k)
can be chosen such that the subvectors belonging to these two identical atoms are complex
conjugates of each other:

e(n,k)2 = e(n,k)1∗. (23)

This corresponds to a real formulation of the Slater–Koster interpolation scheme. Similarly,
a real formulation of the first-principles scheme yields

〈r|{i, ti}|nk〉 = 〈nk|r〉. (24)

Teichler [8] has shown that this choice leads to a maximum localization of the common
bond and anti-bond orbitals,|ν,+,R〉 and|ν,−,R〉, in the sense that the expectation value
of r2 takes on its minimum value. They are related to our atom-centred Wannier functions
via

|ν,±,R〉 = 1√
2
(|νs1R〉 ± |νs2R〉). (25)

The maximum localization of the bond orbitals is equivalent to that of the Wannier functions
at sitess1 ands2. From equations (12), (23), and (24), it follows also that

〈r|{i, ti}|νs1,−R〉 = 〈r|νs2R〉. (26)

This means that we have identical Wannier functions at sitess1 ands2 if we have identical
atoms at the two positions. Thus the introduction of a complex phase would result in an
artificial asymmetry.

There still remains the choice between+1 and−1 for the phase. This has to be made
in such a manner that abrupt changes of sign are avoided, and smooth functions ink-space
are obtained under the integral in equation (12).

2.3.2. No inversion symmetry.In the case without inversion symmetry, the problem cannot
be formulated in terms of real-valued entities. Thus the problem of the choice of the phase
cannot be reduced to the alternatives±1. Nevertheless, a solution can be found in analogy
to the symmetric case. The wave functions, as well as the SK eigenvectors, are decomposed
into a part exhibiting inversion symmetry and a rest term:

|nk〉 = |nk〉I + |nk〉R (27)

e(n,k)s = e(n,k)sI + e(n,k)sR s = 1, 2 (28)

with

〈r|nk〉I = 1

2
(〈r|nk〉 + 〈nk|{i, ti}|r〉) (29)

e(n,k)1
I = 1

2
(e(n,k)1+ e(n,k)2∗) (30)

e(n,k)2
I = e(n,k)1I ∗. (31)

However, this decomposition is not yet unique, because both the wave function and the
SK eigenvector can be multiplied by an arbitrary complex phase:

|ñk〉 = |nk〉eiχ (32)

ẽ(n,k)1,2ν = e(n,k)1,2ν eiξ . (33)
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The contributions to the norm resulting from the symmetrized parts as functions ofξ

andχ are

|ẽ(n,k)I |2(ξ) = 1

2
+ 1

2
Re

(
e2iξ

∑
ν

e(n,k)1νe(n,k)
2
ν

)
(34)

〈ñk|I ñk〉I (χ) = 1

2
+ 1

2
Re(e−2iχ 〈nk|{i, ti}|nk〉). (35)

For eachn and eachk, χ andξ are chosen such that they maximize these expressions.
The relative phase is then set to±1 taking into account only the symmetric parts, in analogy
to the case with inversion symmetry.

The idea of this procedure is simply to disregard the asymmetric contributions, and to
treat, for example, a III–V compound like an element of the fourth group as far as the
choice of the phase is concerned.

An alternative method is to choose the phase such that the expression

exp [−ik · s]e(n,k)sν
∗〈r|nk〉

is real and positive at the centre of the Wannier function|νs0〉 or close to the centre in the
case in which the Wannier function vanishes there for symmetry reasons. Here, the idea is
that the localization in the central sphere is maximized, because according to equation (20)
the imaginary part does not contribute.

In general the first method is to be preferred because of its symmetric character, in
contrast to the second one, which selects one particular atoms.

3. Results

We considered the semiconductors of the fourth group of the periodic table which crystallize
in the diamond structure, and several III–V compounds with zinc-blende structure. The
Bloch functions were taken from the MAPW calculations of Bross and Bader [11, 12],
which were carried out within the non-relativistic local density approximation (LDA) using
the density functional according to Gunnarsson and Lundquist [13]. The most important
features of the wave functions obtained from the MAPW procedure are that they are
orthogonal to the core states and everywhere differentiable inr, so the Wannier functions
will have the same properties. In a more rigorous treatment, the heavier materials should
be treated in a relativistic frame, but for our considerations a non-relativistic treatment is
sufficient. It is a well known shortcoming of such calculations that the band gap obtained is
too small compared to experimental data, but the ground-state properties can be described
satisfactorily. Details about the numerical representation of the Bloch functions used to
construct the Wannier functions can be found, for example, in [12].

The zinc-blende structure consists of an fcc lattice with a basis of two atoms, which in
general are not identical. The diamond structure constitutes the special case in which they
are identical. The point subgroup is the tetrahedral group Td of order 24, which is also
the point group in the case of the zinc-blende structure. The point group of the diamond
structure is the cubic group Oh of order 48, due to the additional inversion symmetry.

3.1. Parametrization of the band structure

We employed the usual eight-band model Hamiltonian consisting of one s function and
three p functions per atom. So the band complex considered consists of the four valence
bands and the first four conduction bands. It is defined by the point group representations
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at k = 0. These are, with increasing energy,01, 015, 01, and015 of Td for the zinc-blende
structure, and01, 025′ , 02′ , and015 of Oh for the diamond structure, respectively. The
splitting into even and odd representations for the valence and the conduction bands in the
case of the diamond structure is due to the additional inversion symmetry. But the subduced
representations of the point subgroup Td are the same as for the zinc-blende structure. So
we have for both atoms

Γs(α) =
(

Γ1(α) 0
0 Γ15(α)

)
s = 1, 2. (36)

In the following, the Wannier functions will also be called s functions (01) and p functions
(015: x, y, z). Note that they do not exhibit definite parity, in contrast to their atomic
counterparts.

In agreement with Papaconstantopoulos [14], we find for all materials that the MAPW
wave function of the fifth conduction band at the point W does not contain s symmetry,
but contains d symmetry, while it is s-like at the point X. This strong mixing of s and d
symmetries would imply an enlargement of the sp model by both types of symmetry. So in
contrast to the empirical tight-binding method, the sps∗ model [15] is not suitable for our
aims, since we try to adapt the SK model Hamiltonian to the first-principles band structure
as precisely as possible. However, due to the high-dimensional and non-linear nature of
this problem, the enlargement is difficult to perform.

Figure 1. The band structure of GaAs. ——: MAPW; - - - -: interpolation.

The fit of the independent SK parameters (14) was carried out at 110k-points in
the irreducible wedge of the Brillouin zone. We considered interactions up to the fourth
neighbours. The result is a precise reproduction of the valence bands in the range of accuracy
of the first-principles calculations and of the first two conduction bands on a mRyd scale.
The mean errors of the interpolation are given in tables 1 and 2. Figure 1 shows the
parametrized band structure of GaAs compared to the first-principles band structure.
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Table 1. Mean errors of the Slater–Koster interpolation for the diamond structure, in mRyd.

Band C Si Ge α-Sn

Valence 2.0 1.7 1.4 1.4
Fifth 6.2 7.1 9.7 4.2
Sixth 55.5 40.1 34.5 22.5

Table 2. Mean errors of the Slater–Koster interpolation for the zinc-blende structures, in mRyd.

Band BN AlP GaAs AlAs InSb GaP InP SiC

Valence 1.7 1.8 1.7 1.8 0.5 1.0 0.5 1.1
Fifth 4.7 8.7 3.1 2.9 3.3 2.7 4.6 8.7
Sixth 43.0 29.4 24.9 31.3 16.1 26.7 10.0 43.6

Figure 2. Wannier functions with s symmetry for Si in the (111) direction. The Wannier
functions are centred at the atoms next to the dotted mirror axis. The precise positions of the
nuclei coincide with the most distinctive local maxima of the functions, which are due to the
s-like parts present in all spheres.

As can be seen from the band structure, the deviations for the conduction bands are large
in the neighbourhoods of the points W, L, and K, while the agreement is much better in the
interior of the Brillouin zone and in particular at the conduction band edge. If, for example,
for GaAs only the deviations below the conduction energy015 (at 1.7 Ryd in figure 1) are
considered, there remains a mean error of only 2.3 mRyd for the conduction bands in this
region. The SK parameters will not be given here, since they depend sensitively on the
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approximations made in the calculation of the band structure†. In general, it is important
to use a first-principles scheme which yields well converged wave functions in order to
guarantee that the band structure does not show artificial steps ink-space, which would
prevent a precise fit.

3.2. Phase

It was stated in section 2.3 that in both cases, the diamond structure and the ‘symmetrized’
zinc-blende structure related to it, we still have to determine the appropriate sign of the
integrand in equation (12). While the two atoms are coupled by the reality condition (23),
there is no prescription for the weights of the different componentsν of the subeigenvector
e(n,k)s . It turns out that the highest degree of localization for all symmetries is obtained
when only the s symmetry is taken into account here, instead of, for example, the symmetry
with the largest amplitude for a particular(n,k). This can be understooda posteriori by
considering the higher degree of localization of the s functions. Thus, we simply require

Re(exp [−ik · s]e(n,k)sν
∗〈r = 0|nk〉) > 0 (37)

for all (n,k).
The symmetrizing procedure works in all cases except those of BN and SiC, where the

other method was used. The failure in these cases is due to the lack of ‘diamond-like’
symmetry in the electronic charge density of these materials (see, e.g., for BN, reference
[12]). In all other cases the second method has also been applied in order to check the
results of the symmetrizing method. As no qualitative differences appeared, it can be said
that the results for the localization of the Wannier functions given below are reasonable.

3.3. Localization

As a measure for the localization of the Wannier functions, the norm integral confined to
the central muffin-tin sphere is used:

P sν ≡
∫
MT S

|〈r|νs0〉|2 dr. (38)

The values are given in table 3.

Table 3. The norm integralPν in the central muffin-tin sphere of Wannier functions for diamond
structure.

s p

C 0.59 0.53
Si 0.60 0.28
Ge 0.66 0.32
Sn 0.65 0.34

For the diamond structure, we find an average localization of 60% in the central sphere
for the s function and 30% for the p function. So the s functions are much more fully
localized than the p functions. An exception is diamond itself, where the value for the p
function is almost as large as the one for the s function. No significant localization can be
found in the remaining spheres. This means that the rest of the norm is smeared out over

† The parameters are available from the authors on request.
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Table 4. The norm integralPν in the central and adjacent muffin-tin spheres of Wannier functions
for zinc-blende structure.

III component V component

s p s p

Central Adjacent Central Adjacent Central Adjacent Central Adjacent

BN 0.32 0.01 0.14 0.01 0.18 0.05 0.13 0.06
AlP 0.31 0.02 0.17 0.01 0.22 0.04 0.14 0.06
GaAs 0.28 0.04 0.16 0.01 0.21 0.06 0.17 0.05
AlAs 0.26 0.03 0.15 0.01 0.16 0.06 0.13 0.05
InSb 0.32 0.04 0.17 0.005 0.25 0.06 0.15 0.04
GaP 0.33 0.03 0.21 0.004 0.29 0.04 0.15 0.05
InP 0.32 0.03 0.19 0.005 0.21 0.05 0.11 0.06

Si C

SiC 0.34 0.01 0.19 0.01 0.22 0.04 0.13 0.05

Figure 3. Wannier functions with p symmetry for Si in the (111) direction. The Wannier
functions are centred at the atoms next to the dotted mirror axis. The precise positions of the
nuclei coincide with the most distinctive local maxima of the functions, which are due to the
s-like parts present in all spheres.

the whole space. For silicon, the behaviour of the functions is illustrated in figures 2 and 3.
In agreement with the values in table 3, the s functions fall off much more quickly than the
p functions. In the case of the III–V compounds as well, the s functions are better localized
than the p functions. However, here all of the functions are less localized in the central
sphere than in the case of the diamond structure. Considerable contributions are found
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also in the four adjacent atomic spheres. On adding these, the same order of magnitude
is obtained for the degree of localization. Note that there exists an asymmetry of the two
components. The group III Wannier functions are much more fully localized in the central
sphere than the group V functions, especially the s functions. On the other hand, the group
V functions, in particular the p functions, make larger contributions in the four adjacent
spheres, so their degree of localization in all of the five spheres taken together exceeds that
of the group III functions. This is in agreement with reference [12], where it is shown
for BN that, due to the charge shift from the boron to the nitrogen atom, the size of the
latter is increased, in the sense that the spherical form of the charge density around the N
nucleus extends into the adjacent spheres, while that around the B nucleus is contained in
the interior of its own muffin-tin sphere. The values for the localization are given in table 4.

Figure 4. Wannier functions with s symmetry for GaAs in the (111) direction. ——: Ga;
- - - -: As. The Gafunction is centred at the atom to the left of the dotted mirror axis, and
the As function at that to the right. The precise positions of the nuclei coincide with the most
distinctive local maxima of the functions, which are due to the s-like parts present in all spheres.

As examples, the Wannier functions for GaAs are shown in figures 4 and 5. The
number of nodes in the central sphere is determined by the symmetry type and the row in
the periodic table, in analogy to atomic 4s or 4p functions. The two components show a
tendency towards symmetry with respect to the mirror axis, in agreement with the choice
of phase applied.

While the degree of localization and the shape of the Wannier functions in the central
sphere are not sensitive to the mesh used for the integration in (12), the shape of the Wannier
functions far away from the centre of course is. So the integration mesh has to be refined
until the precision required by a certain application is achieved.
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Figure 5. Wannier functions with p symmetry for GaAs in the (111) direction. ——: Ga;
- - - -: As. The Gafunction is centred at the atom to the left of the dotted mirror axis, and
the As function at that to the right. The precise positions of the nuclei coincide with the most
distinctive local maxima of the functions, which are due to the s-like parts present in all spheres.

The properties of the Wannier functions make them suitable for the explicit evaluation
of various kinds of matrix element. Matrix elements of potentials that fall off sufficiently
quickly, like those due to lattice imperfections, interfaces, or surfaces, can be calculated
directly by performing an integration over a finite region in space, typically several unit
cells. The matrix elements of the periodic operators can be evaluated in the original Bloch
basis before the transformation into the Wannier basis is carried out.

As an example we consider the position operator. It can be split into a non-periodic
part which is diagonal in the Wannier basis, and a periodic partX which is off-diagonal:

〈µs′R′|r|Rνs〉 = (R+ s)δRR′δss ′δνµ + 〈µs ′R′|X|νsR〉. (39)

The periodic part can be evaluated by means of the Bloch functions:

〈µs ′R′|X|νsR〉 = (1− δRR′δss ′δνµ)
∑
k∈BZ

exp [−ik · (R−R′ + s− s′)]

×
∑
nn′
e(n′,k)s

′
µe(n,k)

s
ν
∗
∫
WSC

〈n′k|r〉r〈r|nk〉 dr. (40)

The integration is extended over only one Wigner–Seitz cell, so it can be performed without
difficulty. The matrix elements are given in table 5. They are small compared to the cubic
lattice constant of typically 10 au, and their decay is again due to the localized character of
the Wannier functions.
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Table 5. Values for dipole matrix elements for GaAs and AlAs in au. 1 indicates a Ga or
Al Wannier function centred ats1 = (111)a/8, and 2 an As Wannier function centred at
s2 = −(111)a/8.

GaAs AlAs

On site

〈s10|z|z10〉 0.034 −0.022
〈x10|z|y10〉 0.008 −0.013
〈s20|z|z20〉 0.034 −0.022
〈x20|z|y20〉 0.009 −0.014

First neighbours

〈s10|z|s20〉 −0.024 0.003
〈s10|z|x20〉 0.010 0.012
〈s10|z|z20〉 0.040 0.032
〈x10|z|s20〉 −0.006 −0.000
〈x10|z|x20〉 0.002 −0.012
〈x10|z|y20〉 0.012 −0.017
〈x10|z|z20〉 0.006 −0.013
〈z10|z|s20〉 0.051 −0.044
〈z10|z|x20〉 −0.001 0.003
〈z10|z|z20〉 −0.020 0.002

3.4. A homogeneous external electric field

We want to show how the Wannier functions can be used as a basis for the numerical
solution when a homogeneous external electric field is applied. The eigenfunction with
energyE is expanded in terms of layer Wannier functions (21) for layers perpendicular to
the field direction:

|k⊥, E〉 =
∑
νls

8νsl(E)|k⊥, νsl〉. (41)

8νsl(E) is the envelope for the layer Wannier function with symmetryν at basis atoms.
Employing a scalar potentialF · r, the Schr̈odinger equation becomes∑

νls

〈k⊥µs′l′|H+ F ·X|k⊥νsl〉8νsl = (E − F · (la3+ s′))8µs ′l′ (42)

where the correction to the Slater–Koster parameters due to the periodic part of the dipole
matrix elements is scaled by the field strength. IfE is an eigenvalue andLa3 is the lattice
period in thea3-direction, thenE + LF · a3 is also an eigenvalue, and the corresponding
envelope is

8ν,l+L,s(E + LF · a3) = 8νls(E). (43)

Thus, the solutions have to be determined for only one energy interval.
Let us consider an infinite superlattice. The Hamiltonian in the basis of the layer Wannier

functions is an infinite band matrix, the width of which is determined by the number of
neighbours taken into account. In order to obtain an approximation to the eigenvalues and
eigenvectors of the infinite matrix, we consider a finite submatrix of dimensionn. This is
motivated by the expected localized character of the eigenvectors—which correspond to the
Wannier–Stark resonances—due to the diagonal term in equation (42). We do not introduce
periodic boundary conditions, so the finite matrix is still of band form. The band matrix can
be transformed into a tridiagonal matrix by means of an algorithm (Givens rotations [16])
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which maintains the band form in each step. Then selected eigenvalues can be calculated
using the method of bisection. Focusing on eigenvalues with indices close ton/2, we find
ones which are separated byLF ·a3. The corresponding eigenvectors are found by inverse
iteration. The dimension of the band matrix, i.e. the number of potential wells considered,
depends on the desired numerical accuracy of the spacingLF ·a3 between the eigenvalues.

Figure 6. Squares of envelopes for a GaAs/AlAs superlattice with a (001) growth direction
for k = 0 andF = 50 keV cm−1 in the growth direction. Only those states which show a
considerable degree of localization are shown. ——: squares of envelopes82

s +82
z for Ga and

Al. - - - -: squares of envelopes82
s +82

z for As. · · · · · ·: energy eigenvalues.

As an example, we considered a GaAs/AlAs superlattice with a (001) growth direction,
which is also the field direction. The slabs consist of ten unit cells of GaAs and ten cells
of AlAs, respectively, which are modelled by means of the respective bulk parameters.
The results for the envelopes show many extended states with small amplitudes, and a few
localized states with large amplitudes in one slab resulting from flat superlattice minibands
(see figure 6). In particular the highest valence state is due to the valence band maximum
(015v) of GaAs. The conduction band shows several states resulting from the X valley of
AlAs. Above, there is a well localized state resulting from the conduction band minimum
(01c) of GaAs. It can also be seen that the maximum of the envelopes is moved in opposite
directions for the two basis atoms.

In contrast to an effective-mass approach, our method provides envelopes for each
symmetry, and the wave function is known on a microscopic scale in terms of the envelopes
and the Wannier functions.

In the example given above, we neglected the interface effects by simply using the
bulk parameters for the different slabs. This was justified here because we only wanted to
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demonstrate the usefulness of a localized basis in the treatment of an external field, which
is clearly the dominating effect here.

In a precise calculation of the ground-state properties of layer structures, one has to
calculate overlap and potential matrix elements connecting the bulk Wannier functions of
the materials involved, which is a straightforward task once the Wannier functions are
given explicitly. The determination of the eigenstates can then be performed using the
sophisticated matching techniques recently developed by Hummel [17].

4. Conclusion

We have shown how generalized symmetry-adapted Wannier functions for diamond- and
zinc-blende-type semiconductors can be constructed from Bloch functions. They form
an orthogonal set, transform according to representations of the point subgroup, are
differentiable, and are orthogonal to the core states. Two crucial points enter into the
solution of the problem. The first is a precise Slater–Koster parametrization of the first-
principles band structure. The second is the choice of the phase of the Bloch functions, for
which a method could be established even in the case of the zinc-blende structure, which
lacks inversion symmetry. Due to these properties, they can serve as a numerical basis
equivalent to that of the Bloch functions with a precision that is only restricted by the
number of bands included in the SK Hamiltonian.
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Appendix. Treatment of degeneracies

In the case of a degeneracy at the pointk, there exists an arbitrariness in the first-principles
eigenfunctions as well as in the eigenvectors of the model Hamiltonian belonging to the
degenerate energy. This arbitrariness is connected to the fact that the representations under
which either of them transform are determined only up to equivalence. We consider the
little group of k: G(k) = {{β, tβ}|βk = k + K}. Here tβ denotes the non-primitive
translation associated with the rotationβ, andK a reciprocal-lattice vector. The degenerate
Bloch functions transform in the following way:

{β, tβ}|nk〉 =
∑
n′
D̃k(β)nn′ |n′k〉 for β ∈ G(k) (A1)

where the sum is extended over the degenerate states. The matricesD̃k(β) form an
irreducible representation ofG(k), the dimension of which is the degreed of the degeneracy.
The matrix elements of the representation are determined in the following way:

D̃k(β)nn′ = 〈n′k|{β, tβ}|nk〉. (A2)

The integral can be reduced to the Wigner–Seitz cell, becauseβk = k.
Using (13) yields

D̃k(β)nn′ =
∑
RR′

∑
ss ′

exp [ik · (s− s′ +R−R′)]
∑
νν ′
ẽ(n,k)s

′
ν ′
∗
ẽ(n,k)sν

× 〈ν ′s′R′|{β, tβ}|νsR)〉. (A3)
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ẽ(n,k)sν are the correct eigenvectors, still to be determined. From the transformation
properties of the Wannier functions (16) and (A1), andβk = k, it follows that

D̃k(β)nn′ = exp [ik · tβ−1]
∑
s

∑
µν

0s(β)
−1
νµ ẽ(n,k)

s
µ
∗ẽ(n′,k)sν . (A4)

In general, the representation defined by

Dk(β)nn′ ≡
∑
s

∑
µν

0s(β)
−1
νµe(n,k)

s
µ
∗e(n′,k)sν (A5)

is a unitary representation ofG(k) equivalent toD ∼ k. So there exists a unitary trans-
formationU with

Dk(β) = UD̃k(β)U−1 for all β ∈ G(k). (A6)

The correct eigenvectors̃e(n,k)sν can be found by means of a projection operator technique:

d

g

∑
β∈G(k)

D̃k(β)nn
∑
µ

0s(β)
−1
νµe(n,k)

s
µ
∗ = d

g

∑
β∈G(k)

D̃k(β)nn
∑
n′
Dk(β)nn′e(n

′,k)sν
∗

= d

g

∑
β∈G(k)

D̃k(β)nn
∑
n′pq

UnpD̃k(β)pqU
−1
qn′e(n

′,k)sν
∗

=
∑
n′pq

δnpδnqUnpU
−1
qn′e(n

′,k)sν
∗

= Unn
∑
n′
U−1
nn′e(n

′,k)sν
∗ = Unnẽ(n,k)sν∗. (A7)

g denotes the order ofG(k). The sums are extended over the degenerate band indices.
In the third step we have used the orthogonality relations for irreducible representations of
finite groups. Normalization yields the new eigenvectorsẽ(n,k)sν up to a phase factor. The
relative phase factors are determined by comparing the off-diagonal elements calculated
according to (A5) with those from (A2).

In this way the freedom is removed which lies in the arbitrary orientation of the
degenerate eigenfunctions, leading to the failure of thek · p procedure in the case of
a degeneracy. Thus we obtain smooth functions ink-space, and as a consequence well
localized Wannier functions.
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